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Abstract 

After a discussion of the historical background and of 
the properties of structural descriptors, the concept of 
mappings is applied to establish and quantify geome- 
trical relationships among crystal structures. Mappings 
that lead to relationships are called similarity operators. 
Thus, all structures belonging to the same structure type 
can be collected, e.g. from the data of a data bank, by 
suitable similarity operators. Moreover, different struc- 
ture types may be grouped into structure families using 
the same technique. A procedure is described to 
complete a similarity operator for a pair of structures 
if a relationship is present. A practical example is 
presented; further applications will be given in a 
separate paper. 

1. Introduction 

Since the amount of investigated and well known crystal 
structures is increasing rapidly (cf. the number of 
entries per year to the data bases), it is one of the most 
urgent problems of crystallography to find a suitable 
classification scheme to control the huge amount of 
data. In the present situation, it is difficult to find a 
relative of a given crystal structure or even to find out 
whether the structure under consideration belongs to an 
already known structure type. To make optimal use of 
the knowledge on crystal structures, e.g. for the 
development of new materials, a classification scheme 
is needed that collects related structures in the same 
group or class. 

2. Historical background 

The importance of the problem was recognized with the 
first edition of Strukturbericht by Ewald & Hermann 
(1931). They based their classification scheme (no. 1) 
(cf. pp. 7 f t . ) o n :  
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(i) the lattice symmetry and the equivalence of the 
Wyckoff  positions occupied in the structures; 

(ii) the type of chemical formula. 
Structures that coincided with respect to these two 

properties were regarded as belonging to the same 
structure type. 

This definition of a structure type, however, was not 
accepted by the crystallographic community since such 
different structures as CO 2 and FeS 2 pyrite belong to the 
same type. The later editions of Structure Reports did 
not use this classification scheme but restricted the 
arrangement of structures according to the chemical 
composition; despite this change, many old symbols for 
structure types are still in use as trivial names, e.g. AI5 
type etc. 

A new approach (no. 2) to the classification problem 
was applied by Pearson (1967). He introduced the 
Pearson symbol tbr classification, which consists of the 
Bravais-lattice symbol and the number of atoms within 
the unit cell. Of course, this symbol is not unique for a 
structure type but it allows at least a separation of 
crystal structures to simplify the recognition of closely 
related ones. A broader discussion referring to the term 
'structure type' can be found in his textbook on crystal 
chemistry and physics of metals and alloys (Pearson, 
1972): ' . . .  substances only have the same structure type 
when the atoms occupy the same site sets in the same 
space group and the atoms on a given site set have the 
same coordination'. Similar ideas and formulations can 
be found in other textbooks and papers. 

Another attack (no. 3) on the problem was started by 
Parth6 and co-workers in a series of publications. They 
sharpened the definition of a structure type: 'Two 
structures are called (configurationally) isotypic if they 
have the same space group, the same number of atoms 
in the unit cell on the same Wyckoff  sites with the same 
or similar positional coordinates (xyz) and the same or 
similar values of the unit-cell axial ratios (c/a, a/b, b/c) 
and cell angles (c~,/3, y) '  (Parth6, 1990). 

It is evident that approaches 2 and 3 are stricter than 
approach 1; both of them demand similarity with 
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218 THE CLASSIFICATION OF NON-ORGANIC CRYSTAL STRUCTURES. I 

respect to the coordination (provided by the similarity 
of coordinates in approach 3). However, they are too 
strict with respect to the Wyckoff positions because in 
approach 1 equivalent positions are tolerated as they 
should be, e.g. in the structural descriptions for ZnS, 
sphalerite, 

(i) Zn in 4(a) 000, S in 4(c) 1 1 

and 
(ii) Z n i n a ( b ) ~  ½ 1 S i n a ( d )  3 43 - 43 - 

are equivalent in space group F43m. They differ, 
however, with respect to the Wyckoff positions. 
Approach 3 tries to take care of this difficulty by 
standardization. Parth6 & Gelato (1984, 1985) and 
Gelato & Parth6 (1987) proposed a standardization 
procedure to resolve the ambiguities. It must be pointed 
out, however, that this procedure will give reasons for 
additional difficulties although it is very helpful in many 
cases. 

Recently, Burzlaff & Rothammel (1992) and 
Malinovsky, Burzlaff & Rothammel (1993) investigated 
the conditions for geometrical relationships from a more 
comprehensive point of view using the concept of 
mappings. Before a discussion of the properties of 
mappings, it is convenient to summarize the terms that 
are used to describe a crystal structure. 

3. Structural descriptors 

A crystal structure is described uniquely by the set of its 
analytical descriptors: 

(i) The basis B of the lattice; B is a 1 x 3 matrix that 
consists of three vectors: 

B = ( b l b 2 b 3 ) .  

B determines the metric tensor G and thus the unit cell: (b) 
G = BiB = b 2 (blb2b3) 

I! 3 

b .b  I bl . b  2 bl . b  3~ 

- b2 bl 112 "b2 b2 113) =(gik). (1) 

b3 b l b 3 • b 2 b3 b3 

(ii) The space group F given by the set of symmetry 
operators using the basis of the lattice: 

F = {(gin; Tin) }, (2) 

m is the order of the related point group {Rm}; this set 
can be restricted to the list of generators of the space 
group. Note that the space-group symbol normally does 
not fix the origin, the set of operators or generators, 
however, does. 

(iii) For each of the N atoms in the asymmetric unit, a 
3 × 1 matrix X i must be given; X i contains the 
coordinates. Since each atom in this list is connected 

with a Wyckoff position, it is useful to give the Wyckoff 
letter in addition and the site symmetry. The Xi may be 
combined to a coordinate matrix 

I 
X X 2 • . . X i • . . X N 

C - - ( X i ) :  Yl Y2 . . .  Yi . . .  Y N ) .  (3) 
Z l  Z 2  • . .  Z i • . .  Z N 

Beside the analytical descriptors, some geometrical 
descriptors are in use; two of them are of special 
importance: 

(i) The local descriptors containing information on 
the neighbourhood of an atom, i.e. the coordination 
number and the coordination polyhedron. Although this 
descriptor may not be unique depending on the view of 
the user, it can be sufficiently fixed by rules or by 
computational procedures [e.g. by the method of the 
largest gap in a series of distances (Brunner & 
Schwarzenbach, 1971)]. Another approach is the use 
of the Dirichlet (1850) domain [or Voronoi (1907) 
domain or Wigner-Seitz (1933) cell] of the atom, the 
coordination number may be regarded as limited by the 
number of its faces. For labeling the coordination 
polyhedra, the modified symbolism of Donnay, Hellner 
& Niggli (1964) could be suitable. 

(ii) The global descriptors containing information on 
the type of network or connection pattern of the 
structure. Several systems are in use strongly depending 
on the field of application. Since in this paper global 
descriptors are restricted to very general types like 
'isolated groups', 'chains', ' layers',  'rings' etc., no 
recommendations for a special system will be given. 

4. Comparing crystal structures 

Crystal structures may be regarded as infinite geo- 
metrical objects with special properties. They consist of 
a translational repetition of a finite volume, e.g. the unit 
cell, that contains a finite number of atoms, the 
distribution of which is governed by the discrete but 
infinite set of symmetry elements, i.e. the symmetry of 
a space group. Thus, the comparison of two crystal 
structures must take care of: 

(i) the relationship among the sets of symmetry 
elements in geometrical or symmetry operators in an 
algebraic sense; 

(ii) the relationship among the unit cells; 
(iii) the relationship among the atomic positions. 
The interdependence of these three properties does 

not allow the application of well known least-squares 
procedures as they are used for best rigid-body 
molecular fits (e.g. Ferro & Hermans, 1977, and 
citations therein) or the determination of the distortion 
of coordination polyhedra (Dollase, 1974) because 
shifts will occur in the general case that lead to different 
locations for related symmetry elements. Thus, a 
general mathematical procedure was looked for that is 
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more suitable for the treatment of relationships among 
symmetry operators, unit cells and atomic coordinates 
simultaneously using the basis of the crystal lattice; an 
adequate tool is the concept of affine mappings. 

5. Mappings and images 

Mappings may be represented by pairs of matrices 
(M;V), M being a 3 × 3 ,  V a 3×  1 matrix. It is 
convenient to use different notations, the pair notation, 
the block-matrix notation and the 4 × 4 matrix notation 
introduced by Bieberbach (1910); in the latter case, M 
and V are combined into a 3 × 4 matrix and extended by 
an additional fourth line (0001) to the 4 × 4 matrix M: roll u') 

( M ; V ) =  ( M  V )  m 2 m 2 m 2 v 2 
0 = m~ m 3 m~ U 3 -'-- ~ "  

0 0 0 1 

Mappings may be inverted; assume 

(M; V ) =  (M: V)  -1 , 

then 

i.e. 

:(o 
/~/= M-l and V = - M -  1 V. 

(4) 

(5) 

Mappings may be applied to the analytical descriptors 
of a crystal structure providing each descriptor with an 
image. If we adapt the notation of a descriptor to the 
extended notation of the mapping, the images can be 
represented easily by products of matrices. The 
adaptation is indicated by a 'bar' as follows. 

(i) B is adapted by extending the matrix B by the o 
vector: 

B = ( b l b 2 b 3 o ) ,  (6) 

normally, o equals the zero vector; it describes the shift 
of origin if the image of B is constructed. 

(ii) (R; T) is extended like (M; V): 

( r l r l r ~ t l  I 

0 1 = r? ~ r3 3 t 3 = R. (7) 

0 0 0 1 

(iii) X is extended by a '1' in an additional row: 

~" = . ( 8 )  

Images will be designated by a tilde '--~' above the 
label of a matrix. Since all analytical descriptors are 
related to the same basis, the three types of images are 
not independent of each other. If the image of a 
coordinate matrix is defined by 

X = M X  or ) ( = M X + V ,  (9) 

then 

B -- BM -l 

since 

thus 

or B = B M  -1 and 6 = o - B M - I V ,  

(10) 

BX = BX = BMX, 

m 

m ~ m  

N = BM. 

If the influence of a symmetry operation is designated 
by 

Y = RX, 

thus 

Y = RX = MRX = RMX, 

then 

M R - R M  or R = M R M - 1  or k = M R M - I  

and ~1" = ( E -  R)V + N ( T  + L). (11) 

{L} covers the set of lattice-point coordinates to indicate 
the possible changes of T. Similarly, because of (10), 

= (M-I) tGM -l . (12) 

All images are simply products or sums of products of 
matrices under the assumption that M can be inverted. 

It must be stressed that geometrical descriptors do not 
change under coordinate transformation, they are 
invariant with respect to mappings. 

6. Similarity operators 

The concept of mappings has been applied to different 
crystallographic problems in the past. In all cases, the 
images of analytical descriptors (all or some) are 
compared with corresponding analytical descriptors. 

(a) Bertaut & Billiet (1978, 1979) gave a systematic 
derivation of all equivalent subgroups of a given space 
group using this concept. In this case, the images of the 
lattice basis of the space group must in addition be equal 
to the bases of the subgroups. 
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(b) Burzlaff & Zimmermann (1980) derived the affine 
normalizers of space groups by looking for those sets of 
mappings that lead to sets of images of the space-group 
operators identical with the space group: 

{M} such that {/~}- {(M----R--M-I)} = {~'}. (13) 

This set of mappings is always a supergroup of the space 
group, i.e. the normalizer group. 

(c) Bertaut (1983) treated the displacive phase 
transition of hexagonal MnAs to orthorhombic MnAs 
with the aid of mappings. In this case, the images of the 
basis B and the coordinate matrix C of the hexagonal 
phase should be close, i.e. 'similar', to the related 
descriptors of the orthorhombic phase. Because of this 
property, Bertaut introduced the expression 'similarity 
operator' for such a mapping and finished his paper with 
the remark that 'similarity operators might be important 
for exploring structural relationships'. 

(d) Schmahl & Liebau (1985) used similarity 
operators to evaluate probable paths of atoms in the 
phase-transition process and for the comparison of 
crystal structures. In particular, the thesis of Schmahl 
(1986) contains different considerations how to find the 
correct operator in the case of structures related by 
phase transitions, and a profound discussion on several 
properties of similarity operators may be found there. A 
paper by Schmahl (1990) deals with lattice similarities.* 

A general structural relationship may be regarded - at 
least to a certain extent - as a generalized phase 
transition, the change of the analytical descriptors could 
be thought to result from 'chemical' forces instead of 
the variation of temperature or pressure, e.g. in the case 
of isomorphic replacements. Thus, we want to adopt the 
definition of Bertaut (1983). 

A mapping of the analytical descriptors of a crystal 
structure that leads to a partial or complete similarity 
between the resulting images and the descriptors of a 
second crystal structure is called a similarity operator, 
the labels of such a mapping are changed from (M: V) to 
(S; O). 

Since similarity operators work on all three types of 
analytical descriptors simultaneously, there are strong 
restrictions for the components. 

(a) The image of the basis of structure (1) that should 
be similar to the basis of structure (2) follows (10), thus 

B(2) --~ B(1) - -  B(I)S -l or /}(2)S = B(1). (14) 

The image of B(1) defines a subgroup of the lattice (1) 
including the trivial one, i.e. the lattice itself. Thus, 
the components of S -l must be coordinates of lattice 
points. 

(b) According to (11), the image of the translation 
part of a symmetry operator is defined by 

* The present authors apologize that they missed the papers related to 
examples 1, 3 and 4 in their earlier publications. 

= (E - i¢)0 + SIT + L(1)] 
or (15) 

(E - R)O = T - S[T + L(1)], 

i.e. the components of 0 are strongly restricted under 
the presence of symmetry operators; in fact, they are 
rational numbers as occur in the coordinates of special 
Wyckoff positions without degrees of freedom. 

(c) If we look at a quartet of atoms in structure (I) not 
lying in a plane, we may collect the columns of_their 
coordinates X,, X 2, X3, X4 into a 4 x 4 matrix Q(1); 
their im__~_ges are defined by the matrix product 
Q(1)--SQ(1).  If there is a relationship to _ structure 
(2), there should be a quartet of coordinates Q(2) that is 
similar to the image of Q(1): Q(2)~Q(1)_ - - sO( I ) .  If 
we replace the image of Q(1) by Q(2), then a new 
matrix S is introduced for which the following equations 
hold: 

Q(2) = SQ(1) or S = Q(2)Q(1) -1 -'- S. (16) 

If the deviations between ~q and S are small, the 
restrictions for the components_of S and O discussed 
above can be used to adjust S to S; however, all suitable 
quartets Q(2) have to be tested. The number of quartets 
in structure (2) may be very large, since also different 
arrangements within a quartet will lead to different 
results; it is restricted, however, by the following 
conditions: 

(c~) Q(1) and Q(2) should contain only atoms that 
correspond to each other with respect to their geome- 
trical local and global descriptors; 

(15) the quartets may be set up from symmetrically 
equivalent positions using the same sequence of 
operations or from the coordinates of atoms belonging 
to the same coordination polyhedron. 

7. Quantification of structural relationships 

Following the considerations above, we need a 
quantitative measure for the degree of similarity 
between two structures (1) and (2) on the basis of the 
analytical descriptors. Thus, we define functions for the 
three different types of descriptors derived from the 
comparison between the image of descriptor (1) and the 
related descriptor (2). 

(i) From (10), the image of basis B~ is defined by 
B1S -1 - - ( b l b 2 b 3 ) S  -1 T h e  metrical properties of a 
lattice can be described by 

blb2b3 gik -- bibk cos flik dik ---- abs(bi + bk) 

/~231~31]~12 or  or f/k ---- abs(bi - bk) 

(metrical (metric tensor (length of face 

parameters) elements) diagonals of the cell). 

All three descriptions are equivalent (Malinovsky, 
Burzlaff & Rothammel, 1993). We use the last 
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representation to define the lattice deviation function 
'dev'" 

dev = 1 - (1 - Dl2)(1 - D23)(1 - 032 ), 

Oik = [ I d i k ( 1 ) -  dik(2)[-a t- Ifik(1)- fit(2)l]/[d;k(2) (17) 

+ fit(2)]. 

The images of dik(1) and f i t ( l )  m u s t  be rescaled such 
that the volume of the image of the unit cell of (1) equals 
the volume of the unit cell of (2); the scale factor sc is 
fixed by the condition 

sc = {det[G(2)]/det[(~(1)]} 1/6 = [V(2)/V(1)]I/3. 

(it) From (11), the image of a symmetry operation 
(RI;T1) is ( R l I ' l )  with R I - S R S  -1 and T 1 -  
( E - R ~ ) O  + S(T + Li),  the index 1 designates structure 
(1). Two cases must be distinguished: 

(I) {(R2;T2)} is a subgroup of {(R l" 7"1)}; the 
B/irnighausen (1975) relation. 

(II) {(R2; T2) } and {(RI; 7"1)} have only a common 
subgroup; the NiAs-rutile relation. 

(iii) From (9), the image of a coordinate matrix X for 
an atom in structure (1) is given by X l = S ( X  l +L~)+O;  
if the structures are similar, all (or nearly all) images 
should have close neighbours in structure (2) with 
matrices X 2. Their displacement is measured by the 
distance between the points described by Xl and X 2, 
both of course related to the coordinate system of 
structure (2), Ad12 = [B2(.~" 1 - - X 2 ) [ ;  Adl2  is compared 
with dc, the shortest distance occurring in the 

• coordination polyhedron of the atom. For each X2i and 
X~,, failure indicators n2i and h~i are set to 1 if 
2Ad12 i > dci, and set to 0 otherwise. 

Two functions are calculated. 
(oe) The displacement function 'dis" 

,~1 N2 
~--~(1 - nli)Adl2i -~- ~'~(1 - n2k)Adl2k 

dis = i--1 k=l (18) 
~'1 N2 
~(1  -- n~,) dcli + ~ ( 1  -- n2k) dC2k 
i=1 k=l 

(fl) the failure function 'fail" 

Nl N2 
nit ÷ ~ h2k 

fail = i=l k=l (19) 
~ +N2 

The three functions may be combined to a figure of 
misfit 'mis' .  

mis - 1.0 - (1.0 - dev)(1.0 - dis)(1.0 - fail). (20) 

mis is close to zero if the relationship is a strong one. 
It is evident that this investigation of relationships is a 

procedure to recognize whether two structures belong to 
the same structure type in the sense of Pearson's 
definition. At the same time, this procedure recognizes 
two structures to be configurationally isotypic in the 

sense of Parth6 if the figure of misfit is sufficiently 
small, without any need of standardization. 

The interpretation of the calculated entities is not so 
straightforward as, for example, for a rigid-body 
comparison; the postulate concerning the images of 
the symmetry operators means that the symmetry 
elements of the derived structure can be located at 
exactly the same positions as the related elements of the 
basic structure provided that there are no lattice 
distortions. The function dev measures the deviations 
between the unit cells in the geometrical sense, dis, 
however, does not measure differences between 
distances but only the influence of the different 
coordinates. The basic assumption is that the separation 
of the different properties leads to a sufficiently good 
approximation. The calculations will be demonstrated 
using the relationship between PbS and NaSbS 2 in 
Appendix A. 

8. Structure types, structure families,  aristotypes 
and roots 

The two definitions of Pearson (1972) and Parth6 (1990) 
may be combined to a new rule: 

Rule no. 1: Two structures are called (configuration- 
ally) isotypic if they have the same space group and if 
they can be mapped to each other by a similarity 
operator with a sufficiently small figure of misfit. Some 
investigations show that a convenient value might be 
mis < 0.1. 

The result of the investigations of the structures of 
Lovozerite type shows clearly that the concept of 
similarity operators not only collects those crystal 
structures that belong to the same structure type but 
also different structure types can be bundled into 
structure families if suitable similarity operators lead 
to small figures of misfit but mostly not as small as those 
within a structure type, i.e. if they are related to each 
other in a geometrical sense. Moreover, it should be 
emphasized that not only relationships of symmetry type 
I will be regarded but also those of symmetry type II can 
be included. Thus, another rule can be established: 

Rule no. 2: Two structure types belong to the same 
family if they can be mapped to each other by a 
similarity operator with a sufficiently small figure of 
misfit. Preliminary investigations show that a conve- 
nient value might be mis < 0.2. The space groups of 
structure types belonging to the same family may follow 
a group-subgroup relation or may have only a common 
subgroup. 

A structure family should be represented by its most 
important structure type. Since the members of a family 
differ with respect to their space groups, the outstanding 
representative should be characterized by a symmetry 
property. A suitable criterion could be the symmetry 
density SD, i.e. the number of symmetry operators per 
unit cell, NG, given by the multiplicity of the general 
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position, has to be multiplied by the determinant of the 
mapping matrix S. 

SD = NG det(S). (21) 

This definition leads to the next rule: 
Rule no. 3: The structure type with the highest 

symmetry density SD that occurs in a structure family is 
regarded as its representative; it is called aristotype, in 
agreement with the definition of Megaw (1973). 

It may happen that several aristotypes of different 
structure families show a clear but not too strong 
relationship to another aristotype. In this case, the 
outstanding aristotype is called a root of the different 
structure families. Root structure types and their 
derivatives may differ with respect to their geometrical 
descriptors. 

It is evident that the application of the rules above 
results in a classification system for crystal structures 
that is based on geometrical relationships since the 
application works in a hierarchical sequence. 

9. Comments 

(a) In previous papers by the present authors, another 
method for finding the correct similarity operator was 
proposed for the case of those structures that belong to 
the same structure type. It was supposed that the 
matrices (S;O) should only run over all operations of 
the affine normalizer (see above) to take care of the 
different settings and of different choices of asymmetric 
units or representatives since all these structures have 
the same space group; the shift of origins should be 
determined by the shift between related symmetry 
elements. It turned out, however, that this method is 
not satisfactory for all space groups: three amendments 
have to be done. 

(i) In hemimorphic space groups - i.e. the origin is 
not fixed by symmetry - a similar procedure has to be 
applied as is used in least-squares refinements to 
minimize the sum of distances (or squares of distances) 
between the images and the atoms. 

(ii) In the monoclinic and triclinic cases, the normal- 
izer operations do not include those transformations that 
take care of face diagonals as possible basis vectors; 
these transformations have t o  be investigated sepa- 
rately. For the same reason, there are strong objections 
against standardization procedures. Examples can be 
found showing that structures of the same type are 
distributed onto different standardized classes because 
the vectors a + e and a or c are of similar length, e.g. in 
the monoclinic system. 

(iii) In paramorphic space groups (i.e. space groups 
belonging to point groups m3, 6/m,  4 /m,  23, 6, 6, 4, 
4), additional mappings have to be considered; thus, the 
normalizer procedure is replaced by the Q-matrix 
method. 

(b) There is a difficulty in selecting or determining 
the representative of a structure type in the case that 
there are free parameters. From the statistical point of 
view, the set of representatives of a structure type is a 
random test that contains information on the ideal 
structure type. At the moment, there is no procedure to 
evaluate the ideal parameters of a structure type on the 
basis of the known set of representatives; thus, it is 
proposed that the average parameters of the set be used 
as the actual type parameters. Under this assuption, the 
ideal parameters will be improved if the set of 
representatives is enlarged. 

The method will be fully demonstrated in a separate 
paper but an example is given in Appendix A. 

The authors thank the Deutsche Forschungs- 
gemeinschaft for support. 

APPENDIX A 
Relationships between PbS and NaSbS2 

The structural data are taken from the ICSD base 
edition 1995, collection codes 38293 and 2481, 
respectively; all coordination polyhedra are octahedra 
60, although the distortions stemming from different 
chemistry are significant (cf. Table 1). As the basic 
structure, PbS is chosen. The Q1 matrix is set up twice, 
first using the centre of the octahedron for Pb and the 
corners at the face (111) with coordinates (0.5, 0.0, 0.0), 
(0.0, 0.5, 0.0), (0.0, 0.0, 0.5), for S and then the quartet 
inverted at the centre. Strong chemical distortions lead 
to rather different approximated similarity operators 
that will be improved significantly if they are merged 
(cf. Table 2). The inverse computed with the average 
shows clearly in the first three columns coordinates of 
l_a_ttice points of structure (1), namely (150), (110) and 
(½ ½1); the mapping of the origin of structure (2) with site 
symmetry 1 ends in a good approximation close to a 
centre of symmetry in structure (1)at (~ ~ ~); the inverse 
of the adapted matrix S -1 is the correct similarity 
operator S. A computer program could easily use more 
sophisticated averaging procedures. 

Table 3 contains the quantification results of the 
relationship: The unit-cell deviation is rather small with 
dev : 0.030, the local displacement of the atoms is 
significant with dis : 0.093" however, there are no 
failures (fail -- 0), the misfit mis -- 0.121 is of medium 
size. 

It should be noted that the application to the 
octahedron of Na leads to the same results, the different 
shift of origin is compensated by the difference in the y 
coordinates for Na and Sb. Even the use of the 
octahedron for S will result in the same evaluation, 
indicating that the anti-structure problem is also 
covered. The choice of which atoms should be mapped 
to each other is free for the user (or a computer 
program); there is no need for an additional labelling of 
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Table 1. Structural data 

dc =shortest coordination distance (,~), cp=coordination polyhedron (6o=octahedron). Structure (1): PbS, cubic, space group Fm3m, 
a = 5.934 A, collection code 38293, V = 208.95 ~3; coordinates: Pb in 4(a) (m3m) 000; dczo =2.97; cpvo =60;  S in 4(b) (m3m) 100; dc s = 2.97; 
CPs = 60; metric tensor gi/35.2,0,0/0,35.2,0/0,0,35.2. Structure (2): NaSbS 2, monoclinic, space group C2/c, a = 8.23, b = 8.25, c = 6.48 ~,, 
fl = 124.3 ~', collection code 2481, V = 383.66,~, 3" coordinates: Na in 4(e) (.2.) 0,0.134,0.25; dCNa = 2.91" cpN a = 60; Sb in 4(e) (.2.) 
0,0.603,0.25; dCsb = 2.43; cpsb = 60; S in 8(f) (1) 0.220,0.412,0.240; dc s = 2.43; CPs = 60; metric tensor g;i 67.7 ,0 , -31.7/0 ,68.0 ,0/  
-31.7,0,46.8.  

Ql(a) Ql-I(a)  

o o o o 00)1 / -2 2 i) 0.0 0.0 0.5 0 0  2 0 0 
0.0 0.0 0.0 0.5 0 2 0 

1 1 1 0 0 2 

Coordination polyhedron for Sb at (0.000,0.603,0.250) 60 

Operation 

1 x y z 
2 - x  y ½ - z  

$3 3 - x  1 - y  - z  
4 x 1 - y  ½+z 
5 x - ~  i + y  z 
6 ½ - x  ~ + y  ½ - z  

O~(b) /oo_o.  o.o o:o) 
0 0  0.0 -0 .5  O0 
0 0  0.0 0.0 - 0 5  

1 I 

QI-I (a) 

2 2 2 1 )  
- 2  0 0 0 

0 - 2  0 0 
0 0 - 2  0 

Coordinates Distance 

0 .2200 .412  0.240 2.43 
- 0 . 2 2 0 0 . 4 1 2  0.260 2.43 
- 0 . 2 2 0 0 . 5 8 8  -0 .240 2.77 

0 .2200 .588  0.740 2.77 
- 0 . 2 8 0 0 . 9 1 2  0.240 3.41 

0 .2800 .912  0.260 3.41 

Angle (o) 
1 2 3 4 5 

99 
8 6 9 1  
91 8 6 1 7 5  

1 7 2 8 9 9 2 9 2  
8 9 1 7 2 9 2 9 2  83 

Table 2. Evaluation of the similarity operator 

0.000 0.220 
0.603 0.412 

S ( a ) =  ~ 0.2150 0.2401 

_0.220 _0.220)(_2 _2 _2 i) 
0.412 0.588 2 0 0 
0.260 -0 .240 0 2 0 

1 1 0 0 2 

S(b )=  

0.000 --0.280 0.280 0.220~1/ ( 2 
0 . 6 0 3 0 . 9 1 2 0 . 9 1 2 0 . 5 8 8  / - 2  
02 0 0.240 0.260 0 40, 0 

1 1 1 0 

22,) 
0 0 0  

- 2  0 0 
0 - 2  0 

0.500 -0 .500 -0 .440 0 .000)  

-0.500 -0 .500 0.000 0.603 

= ½ [S(a) + S(b)] = 0.000 0.000 -0 .980 " 0.250 

1 l l l 

0.440 -0 .440 -0 .440 0 .000 /  
-0.382 -0 .382 -0 .030 0.603 

= -0 .020 0.020 - 0 . 9 8 0 0 . 2 5 0 1  
1 ] 0 0 0 

0.560 -0.560 -0.440 0.000) 
-0.618 -0.618 0.030 0.603 

= 0.020 -0 .020 -0 .980 0.250 
0 0 0 ! 

3 - ,  = 

1.00 -1 .00  -0 .45 0 . 7 1 5 \  

- l . 0 0  -1 .00  0.45 0.491 

0.00 0.00 -1 .02 0.255 

0 0 0 1 

-- ,s- '  -1 -1 ½ ~ - s =  ½ ½ o 
= 0 0 - 1  1 0 0 - I  

0 0 0 l 0 0 0 

Table 3. Evaluation of mis 

(i) Unit-cell deviation dev, scale factor sc = (383.66/417.9) I/3 = 0.9719, data for (2) derived from (I) 

[110] : 11.65 11.53 
[0111 : 10.71 10.79 
[1011 : 7.15 7.06 
[101] : 13.34 13.52 

(ii) Displacement dis and failures fail 

X,(2) Im[X,( 1 )] 

Sb 0.000 0.603 0.250 0.000 0.625 0.250 
Na 0.000 0.134 0.250 0.000 0.125 0.250 
S 0.220 0.412 0.240 0.250 0.375 0.250 

Di2 ---- (0.12 + 0.12)/(11.65 + 11.65) = 0.0103 
/923 = (0.08 + 0.08)/(10.71 + 10.71) = 0.0075 
Dr3 = (0.08 + 0.18)/(7.15 + 13.34) = 0.0127 
dev = 1.0 - 0.9897 x 0.9925 x 0.9873 = 0.0302 

AX i Ad i dci 

0.000 -0 .022 0.000 0.18 2.43 
0.000 0.009 0.000 0.07 2.91 

-0 .030  0.037 -0 .010  0.39 2.43 

dis = 2(0.18 + 0.07 + 0.78)/(2.43 + 2.91 + 4.86 + 11.88) = 2.06/22.08 = 0.0933 
fail = 0 

(iii) Figure of misfit mis 

mis ---- 1 . 0 -  0.9698 x 0.9067 x 1.0 = 0.1207 

fail 

0 
0 
0 
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corresponding atoms since the mapping process is 
unique for a fixed similarity operator. 

References 

B~irnighausen, H. (1975). Acta Cryst. A31, $3. 
Bertaut, E. F. (1983). Z. Kristallogr. 164, 95-108. 
Bertaut, E. F. & Billiet, Y. (1978). C. R. Acad. Sci. Ser. A, 

287, 989-991. 
Bertaut, E. F. & Billiet, Y. (1979). Acta Cryst. A35, 

733-745. 
Bieberbach, L. (1910). Math. An. 70, 297-336. 
Brunner, G. & Schwarzenbach, D. (1971). Z. Kristallogr. 

133, 127-133. 
Burzlaff, H. & Rothammel, W. (1992). Acta Cryst. A48, 

483-490. 
Burzlaff, H. & Zimmermann, H. (1980). Z. Kristallogr. 153, 

151-179. 
Dirichlet, P. G. L. (1850). Crelles J. 40, 209-227. 
Dollase, W. A. (1974). Acta Cryst. A30, 513-517. 
Donnay, J. D. H., Hellner, E. & Niggli, A. (1964). Z. 

Kristallogr. 120, 364-374. 
Ewald, P. P. & Hermann, C. (1931). Strukturbericht, 1, pp. 

7-12. 
Ferro, D. R. & Hermans, J. (1977). Acta Cryst. A33, 

345-347. 

Gelato, L. M. & Parth6, E. (1987). J. Appl. Cryst. 20, 
169-183. 

Malinovsky, Y., Burzlaff, H. & Rothamel, W. (1993). Acta 
Cryst. B49, 158. 

Megaw, H. D. (1973). Crystal Structures: a Working 
Approach, p. 283. Philadelphia/London/Toronto: W. B. 
Saunders. 

Parth~, E. (1990). Elements of Inorganic Structural Chem- 
istry. Leipzig: P6ge Druck. 

Parth~, E. & Gelato, L. M. (1984). Acta Cryst. A40, 
169-183. 

Parth~, E. & Gelato, L. M. (1985). Acta Cryst. A41, 
142-151. 

Pearson, W. B. (1967). Handbook of Lattice Spacings 
and Structures of Metals, p. 2. Oxford: Pergamon 
Press. 

Pearson, W. B. (1972). The Crystal Chemistry and Physics of 
Metals and Alloys, p. 16. New York/London/Sidney/ 
Toronto: Wiley Interscience. 

Schmahl, W. M. (1986). Thesis, University of Kiel, 
Germany. 

Schmahl, W. M. (1990). Z. Kristallogr. 191, 23-28. 
Schmahl, W. M. & Liebau, F. (1985). Z. Kristallogr. 170, 

1164-1165. 
Voronoi, G. (1907). Crelles J. 133, 97-178. 
Wigner, E. & Seitz, F. (1933). Phys. Rev. 43, 804-810. 


